Sheet Metal Forming: Processes And Applications
In most of the world, sheet metal thickness is consistently specified in millimeters. In the U.S., the thickness of sheet metal is commonly specified by a traditional, non-linear measure known as its gauge. The larger the gauge number, the thinner the metal. Commonly used steel sheet metal ranges from 30 gauge to about 7 gauge. Gauge differs between ferrous (iron-based) metals and nonferrous metals such as aluminum or copper. Copper thickness, for example, is measured in ounces, representing the weight of copper contained in an area of one square foot. Parts manufactured from sheet metal must maintain a uniform thickness for ideal results.[1]
Sheet Metal Forming: Processes and Applications
There are many different metals that can be made into sheet metal, such as aluminium, brass, copper, steel, tin, nickel and titanium. For decorative uses, some important sheet metals include silver, gold, and platinum (platinum sheet metal is also utilized as a catalyst).
Sheet metal is used in automobile and truck (lorry) bodies, major appliances, airplane fuselages and wings, tinplate for tin cans, roofing for buildings (architecture), and many other applications. Sheet metal of iron and other materials with high magnetic permeability, also known as laminated steel cores, has applications in transformers and electric machines. Historically, an important use of sheet metal was in plate armor worn by cavalry, and sheet metal continues to have many decorative uses, including in horse tack. Sheet metal workers are also known as "tin bashers" (or "tin knockers"), a name derived from the hammering of panel seams when installing tin roofs.[2]
Hand-hammered metal sheets have been used since ancient times for architectural purposes. Water-powered rolling mills replaced the manual process in the late 17th century. The process of flattening metal sheets required large rotating iron cylinders which pressed metal pieces into sheets. The metals suited for this were lead, copper, zinc, iron and later steel. Tin was often used to coat iron and steel sheets to prevent it from rusting.[3] This tin-coated sheet metal was called "tinplate." Sheet metals appeared in the United States in the 1870s, being used for shingle roofing, stamped ornamental ceilings, and exterior façades. Sheet metal ceilings were only popularly known as "tin ceilings" later as manufacturers of the period did not use the term. The popularity of both shingles and ceilings encouraged widespread production. With further advances of steel sheet metal production in the 1890s, the promise of being cheap, durable, easy to install, lightweight and fireproof gave the middle-class a significant appetite for sheet metal products. It was not until the 1930s and WWII that metals became scarce and the sheet metal industry began to collapse.[4] However, some American companies, such as the W.F. Norman Corporation, were able to stay in business by making other products until Historic preservation projects aided the revival of ornamental sheet metal.
Aluminum, or aluminium in British English, is also a popular metal used in sheet metal due to its flexibility, wide range of options, cost effectiveness, and other properties.[6] The four most common aluminium grades available as sheet metal are 1100-H14, 3003-H14, 5052-H32, and 6061-T6.[5][7]
In sheet hydroforming, variation in incoming sheet coil properties is a common problem for forming process, especially with materials for automotive applications. Even though incoming sheet coil may meet tensile test specifications, high rejection rate is often observed in production due to inconsistent material behavior. Thus there is a strong need for a discriminating method for testing incoming sheet material formability. The hydraulic sheet bulge test emulates biaxial deformation conditions commonly seen in production operations.
Use of gauge numbers to designate sheet metal thickness is discouraged by numerous international standards organizations. For example, ASTM states in specification ASTM A480-10a: "The use of gauge number is discouraged as being an archaic term of limited usefulness not having general agreement on meaning."[9]
where k is a factor taking into account several parameters including friction. T is the ultimate tensile strength of the metal. L and t are the length and thickness of the sheet metal, respectively. The variable W is the open width of a V-die or wiping die.
Expanding is a process of cutting or stamping slits in alternating pattern much like the stretcher bond in brickwork and then stretching the sheet open in accordion-like fashion. It is used in applications where air and water flow are desired as well as when light weight is desired at cost of a solid flat surface. A similar process is used in other materials such as paper to create a low cost packing paper with better supportive properties than flat paper alone.
Incremental sheet forming or ISF forming process is basically sheet metal working or sheet metal forming process. In this case, sheet is formed into final shape by a series of processes in which small incremental deformation can be done in each series.
Ironing is a sheet metal working or sheet metal forming process. It uniformly thins the workpiece in a specific area. This is a very useful process. It is used to produce a uniform wall thickness part with a high height-to-diameter ratio.It is used in making aluminium beverage cans.
Sheet metal can be cut in various ways, from hand tools called tin snips up to very large powered shears. With the advances in technology, sheet metal cutting has turned to computers for precise cutting. Many sheet metal cutting operations are based on computer numerically controlled (CNC) laser cutting or multi-tool CNC punch press.
CNC laser involves moving a lens assembly carrying a beam of laser light over the surface of the metal. Oxygen, nitrogen or air is fed through the same nozzle from which the laser beam exits. The metal is heated and burnt by the laser beam, cutting the metal sheet.[20] The quality of the edge can be mirror smooth and a precision of around 0.1 mm (0.0039 in) can be obtained. Cutting speeds on thin 1.2 mm (0.047 in) sheet can be as high as 25 m (82 ft) per minute. Most laser cutting systems use a CO2 based laser source with a wavelength of around 10 µm; some more recent systems use a YAG based laser with a wavelength of around 1 µm.
Photochemical machining, also known as photo etching, is a tightly controlled corrosion process which is used to produce complex metal parts from sheet metal with very fine detail. The photo etching process involves photo sensitive polymer being applied to a raw metal sheet. Using CAD designed photo-tools as stencils, the metal is exposed to UV light to leave a design pattern, which is developed and etched from the metal sheet.
Perforating is a cutting process that punches multiple small holes close together in a flat workpiece. Perforated sheet metal is used to make a wide variety of surface cutting tools, such as the surform.
This is a form of bending used to produce long, thin sheet metal parts. The machine that bends the metal is called a press brake. The lower part of the press contains a V-shaped groove called the die. The upper part of the press contains a punch that presses the sheet metal down into the v-shaped die, causing it to bend.[21] There are several techniques used, but the most common modern method is "air bending". Here, the die has a sharper angle than the required bend (typically 85 degrees for a 90 degree bend) and the upper tool is precisely controlled in its stroke to push the metal down the required amount to bend it through 90 degrees. Typically, a general purpose machine has an available bending force of around 25 tons per meter of length. The opening width of the lower die is typically 8 to 10 times the thickness of the metal to be bent (for example, 5 mm material could be bent in a 40 mm die). The inner radius of the bend formed in the metal is determined not by the radius of the upper tool, but by the lower die width. Typically, the inner radius is equal to 1/6 of the V-width used in the forming process.
Punching is performed by placing the sheet of metal stock between a punch and a die mounted in a press. The punch and die are made of hardened steel and are the same shape. The punch is sized to be a very close fit in the die. The press pushes the punch against and into the die with enough force to cut a hole in the stock. In some cases the punch and die "nest" together to create a depression in the stock. In progressive stamping, a coil of stock is fed into a long die/punch set with many stages. Multiple simple shaped holes may be produced in one stage, but complex holes are created in multiple stages. In the final stage, the part is punched free from the "web".
Spinning is used to make tubular (axis-symmetric) parts by fixing a piece of sheet stock to a rotating form (mandrel). Rollers or rigid tools press the stock against the form, stretching it until the stock takes the shape of the form. Spinning is used to make rocket motor casings, missile nose cones, satellite dishes and metal kitchen funnels.
The process of using an English wheel is called wheeling. It is basically a metal working or metal forming process. An English wheel is used by a craftsperson to form compound curves from a flat sheet of metal of aluminium or steel. It is costly, as highly skilled labour is required. It can produce different panels by the same method. A stamping press is used for high numbers in production.[23]
Sheet metal forming is widely used in automotive, aviation, packaging, and household goods. It is most popular for the manifold technical feasibilities in manufacturing, high precision, mass production, and short processing time. Modern automotive concepts demand a weight reduction by using high strength materials and excellent crash performance, which requires innovative simulation techniques in the design and development phase as well as suitable processing chains. The conventional manufacturing planning method takes a lot of time, hence the Finite Element method (FEM) is applied to reduce the lead time. The FEM prediction accuracy depends on the proper selection of a material model, quality of input parameters, actual operating conditions, and many other factors. This study involves new developments in the sheet metal forming technology, the most influencing factors of the forming process and case studies to justify it. The first case study explains the springback analysis and springback compensation of AlMgSi (6xxx series)-panels. The second case study describes the thickness analysis and deformation behaviour of patchwork blanks for hot stamping processes. 041b061a72